
Sergey Stepanov

GM/CA CAT at the Advanced Photon Source,
Biosciences Division of

Argonne National Laboratory, USA

Architecture of BluIce-EPICS
data collection software for

macromolecular crystallography

GM/CA CAT: Dedicated sector for macromolecular crystallography at APS

GM/CA CAT layout: two canted-undulator ID beamlines and one BM beamline at APS Sector 23,
all dedicated to macromolecular crystallography.

GM/CA canted undulator beamlines

A lot of optics
to control !

GM/CA CAT computing environment

APS 1Gb uplink

eva3000
16TB fiber
storage,
80MB/s

16x 2Gb ports
SAN Switch SAN server DL385

(GFS -> NFS)

GFS

DAY - 2
Workstations

HP ProCurve
24x 1Gb ports
fiber/copper

DAY - 1
Workstations

2x

NFS

NFS

NFS

NFS

GFS

SAN/Fiber, 2Gb
Network, 1Gb

2x

2x

2x

GFS

GFS

GFS

GFS

NFS

SMB

WS3

WS4
winXP

WS1

WS2

WS6

MAR

Keithley

WS5

WS7

WS8
2x

remote

remote

remote

All three beamlines have similar
computing infrastructure

• Independent subnets, storage &
accounts at each beamline

• 16TB fiber channel disk storage
arrays at ID lines 8TB at BM

• 1Gb fiber network & 2Gb fiber
SAN with global file system,
GFS

• Same password for Linux &
Windows using LDAP

• All computer see the same
home directory

• Support for eSata, firewire and
USB2.

• Three computers per beamline
open for remote access.

What is BluIce-EPICS?
GM/CA CAT offers a graphical user interface application named BluIce-EPICS
for collecting crystallographic data at our beamlines.

Here name BluIce stands for Beam Line Universal Integrated Configuration
Environment and descends from a control system of the SSRL SMB beamlines
and EPICS stands for Experimental Physics and Industrial Control System that
is a toolkit for distributed controls widely used at the APS and many other
synchrotrons worldwide. Next pages will show how these two are linked.

The BluIce-EPICS application is a top layer of our distributed control system
and it is aimed to be the only application needed by users, although staff has
access to a variety of advanced controls that can be launched in parallel with
BluIce-EPICS.

The application is executed under Linux OS. In our environment users have
access to multiple Linux computers that all see the same home directory.

Multiple copies of BluIce-EPICS can run in parallel on them, but only one
instance at a time may be a Master, i.e. have rights to control the hardware.

BluIce-EPICS is a multi-tab GUI: core tabs correspond to typical tasks

Older tabs are in Tcl/Tk, newer tabs are in Java. The plan is to convert all tabs into Java.

Why and how our software is different from SSRL BluIce?

BluIce-EPICS user interface was directly derived from the SSRL BluIce code,
but the underlying architecture was completely changed. We had to do that
because of several reasons, but all of them were related to the goal of making
the control system fast and flexible in adding features:

-- BluIce did not have drivers for the electronics we planned for our beamlines;
so we had to use EPICS framework.

-- BluIce did not expect concurrent controls that are unavoidable in the EPICS
world were many applications can talk to the same electronics in parallel.

-- BluIce commands were too high-level and generic (e.g. “move motor to
XXX”) while we wanted to have direct access to the advanced features of
beamline controllers. For example, we wanted to implement on-the-fly
scanning where motor speed needs to be changed and motor position needs
to be synchronized with switching data points.

To make controls fast & flexible we converted BluIce from 3-layer
system into a single layer EPICS application. Multiple instances
of BluIce talk to each other also by means of EPICS mechanisms.

Distributed Control
System Server
(DCSS)

User Interface
Clients (BluIce)

Distributed Hardware
Servers (DHS)

DHS

DHS

DHS

DCSS

The original BluIce is 3-layer system
with socket communications between
the layers.

The DCSS is a central “coordinator”
that is supposed to know everything
about the beamline status.

The GUI is written in Tcl/Tk and the
rest in C/C++.

Architecture of the original SSRL BluIce

CCD

Robot

electronics:
scalers,

digital I/O
DAC, ADC

Bimorph
mirrors
control

APS controls:
-undulator
-ring status
- EPS, etc.

EPICS IOC(s)

motors

Staff beamline automation tasks BluIce-EPICS for beamline users

channel access

MEDM Scan software Automation Scripts

Each BluIce is a single-layer application talking directly to EPICS along with other controls

mySQL initialization

Embedded EPICS
I/O controller

Embedded EPICS
I/O controller

Architecture of BluIce-EPICS

BluIce-EPICS: outsourcing complex controls to helpers

EPICS IOC(s)

EPICS channel
access

Helpers include servers and external scripts that interact with
BluIce via EPICS PVs; some also share mySQL initialization.

Each helper is an independent module that can be written in any
language without knowledge of the main BluIce application.

They widen base of developers: use SNL, C, Java, Perl, Tck/Tk…

Rack of helpers

Frame Server (FPE)

On-the-fly Edge Scans

Point & Click Server

Robot Server

Minibeam alignment

Fluor.signal tune

Frame audit

Big energy move

Sample Autocentering

Collimator In/Out

Keithley Gain Server

On-fly Fluor.Rastering

BL Feedback Server

mySQL initialization

Embedded EPICS
I/O controller

Embedded EPICS
I/O controller

How BluIce-EPICS helpers work: big energy moves

BigEnergyMove script:

Pauses BL intensity feedback server

Changes undulator harmonic and
offset, if needed

Changes mirrors lanes, if needed

Changes filters to preserve beam
attenuation

Re-centers the beam & restarts
intensity feedback server

Reports to BluIce log window & pops-
up dialog messages if needed.

Frame Server:

PMAC:

Frame Server:

BluIce:
is |ΔθB| > 1° ?

No

Yes

Drive energy
directly in BI

Call external script

BluIce-EPICS software team and software development practices

The project started in 2003. Delivering BluIce-EPICS application in tight timeframe
and combining development with maintaining high software availability at fully
booked beamlines has been tough task!

GM/CA software development team: Mark Hilgart, Oleg Makarov, Sudhir
Pothineni, Sergey Stepanov (+ Satish Devarapalli & Alex Urakhchin in the past).

Development practices:
-- collecting suggestions from GM/CA CAT staff crystallographers and end-of-run

reports (yes, we do read and analyze your feedback very attentively!)
-- assigning priorities based on occurrences and after weekly group meetings
-- bugs list queue and new features queue
-- typically a week of testing by staff crystallographers before releasing to users
-- BM beamline as test bed and big changes on shutdowns only
-- version control with Subversion software
-- staff documentation on GM/CA group Wiki and video guides for users
-- open source: snapshots at http://www.gmca.anl.gov/bluice-epics/

Remote beamline controls with BluIce-EPICS

Same NOMACHINE technology as at many
other facilities

Three computers open per beamline (one for
data collection, one for processing & one for
data transfer)

Extra controls for remote operation in BluIce
(see snapshot at the bottom of the page)

Todd Geders using remote controls at U. Michigan

Compliance with Argonne’s enhanced security requirements: access is restricted not
only to the time of an experiment and specified user name, but also to a list of IP
domains from which users work.

http://www.gmca.anl.gov

